Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

cis-Bis[1,3-bis(2-fluorophenyl)tri-azenido- $\left.\kappa^{2} N^{1}, N^{3}\right]$ bis(pyridine- κN)cadmium(II)

Manfredo Hörner, ${ }^{\text {a* }}$ Vanessa S. Carratu, ${ }^{\text {a }}$ Jairo Bordinhao, ${ }^{\text {a }}$ Angela Silva ${ }^{a}$ and Elke Niquet ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Quimica, Universidade Federal de Santa Maria, Caixa Postal 5071, 97110-970 Santa Maria, RS, Brazil, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, Universität Tübingen, Auf die Morgenstelle 18, D-72076 Tübingen, Germany Correspondence e-mail: hoerner@base.ufsm.br

Received 15 January 2004
Accepted 29 January 2004
Online 28 February 2004
In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, the Cd atom lies on a crystallographic twofold axis in space group $I b a 2$. The coordination geometry about the $\mathrm{Cd}^{\mathrm{II}}$ ion corresponds to a rhombically distorted octahedron, with two deprotonated 1,3-bis(2-fluorophenyl)triazenide ions, viz. $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{~F}^{-}$, acting as bidentate ligands (four-electron donors). Two neutral pyridine (py) molecules complete the coordination sphere in positions cis with respect to one another. The triazenide ligand is not planar (r.m.s. deviation $=$ $0.204 \AA$), the dihedral angle between the phenyl rings of the terminal 2-fluorophenyl substituents being 24.6 (1) ${ }^{\circ}$. The triazenide and pyridine $\mathrm{Cd}-\mathrm{N}$ distances are 2.3757 (18)/ 2.3800 (19) and 2.3461 (19) A, respectively. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions generate sheets of molecules in the (010) plane.

Comment

The synthesis of the first cadmium(II) 1,3-diaryl-substituted triazenide complex, $\mathrm{Cd}(\mathrm{ArNNNAr})_{2}\left(\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, was reported in 1887, while the analogous complex with 1,3-diphenyltriazene was prepared in 1963 (Moore \& Robinson, 1986, and references therein). More recently, cadmium(II) diaryltriazenide complexes have received attention in connection with the spectrophotometric determination of cadmium based on the chromogenic behaviour of triazene derivatives (Hayashibe \& Sayama, 1996). To date, only two diaryltriazenide cadmium(II) complexes have been characterized by single-crystal X-ray diffraction, namely $\left[\mathrm{Cd}\left\{\mathrm{PhN}_{3}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}(\mathrm{H}) \mathrm{Ph}\right\}\left\{\mathrm{PhN}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}(\mathrm{H}) \mathrm{Ph}\right\}_{2}\right]$, (II), in which the Cd atom is coordinated by one neutral 1,2bis(phenyltriazeno)benzene ligand and two monodentate 1-(phenyltriazenido)-2-(phenyltriazeno)benzene anions in a distorted-tetrahedral arrangement, and $\mathrm{K}\left[\mathrm{Cd}\left(\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NNN}\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}$], (III), an anionic cadmium complex in which the Cd atom is coordinated in a trigonal-prismatic arrangement by
three chelating deprotonated 1,3-bis(4-nitrophenyl)triazenide ions (Hörner et al., 1996; Hörner, Carratu et al., 2003). In this work, we report the synthesis and structural characterization of the title complex, (I), an axially symmetric mononuclear $\mathrm{Cd}^{\text {II }}$ complex with a symmetrically disubstituted 1,3-diaryltriazenide ion and pyridine (py) as ligands.

(I)

Complex (I) has a structure analogous to that of the related $\mathrm{Co}^{\mathrm{II}}$ complex $\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, (IV) (Peng et al., 1985). The crystal structure of (I) consists of discrete mononuclear complexes in which the $\mathrm{Cd}^{\mathrm{II}}$ ion has a rhombically distorted octahedral coordination geometry. Two deprotonated 1,3-bis(2-fluorophenyl)triazenide ions act as (N11)-η^{1},(N13)- η^{1} bidentate (four-electron donor) ligands, while two neutral pyridine molecules are coordinated cis with respect to one another (Fig. 1).

In the molecule of (I), which has site symmetry 2 , the $\mathrm{Cd}^{\mathrm{II}}$ ion is located in a distorted square-planar base formed by atoms N13, N13 ${ }^{\mathrm{i}}, \mathrm{N} 31$ and N31 1^{i} [r.m.s. deviation $=0.286 \AA$ A; symmetry code: (i) $-x, 1-y, z]$. The crystallographic twofoldsymmetry axis bisects the $\mathrm{N} 13-\mathrm{Cd}-\mathrm{N} 13^{\mathrm{i}}$ [89.09 (9) ${ }^{\circ}$] and $\mathrm{N} 31-\mathrm{Cd}-\mathrm{N} 31^{\mathrm{i}}\left[91.40(10)^{\circ}\right]$ angles, and the $\mathrm{N} 11-\mathrm{Cd}-\mathrm{N} 11^{\mathrm{i}}$ axial angle $\left[141.42(8)^{\circ}\right]$. These values are in good agreement with the angles found in (IV) [N3-Co-N3 ${ }^{\mathrm{i}}=90.3(1)^{\circ}, \mathrm{N} 4-$ $\mathrm{Co}-\mathrm{N} 4^{\mathrm{i}}=89.6(1)^{\circ}$ and $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1^{\mathrm{i}}=149.6(1)^{\circ}$, i.e. Co is also on a twofold axis; Peng et al. (1985)].

As a result of the bidentate coordination mode of the triazenide ligand, the $\mathrm{N}-\mathrm{N}$ bond lengths are equal to within three standard deviations, with a mean value of 1.307 (4) \AA (Table 1). These bond lengths are longer than the typical value for a double bond (1.24 A.; International Tables for Crystallography, 1995, Vol. C), and are similar to the $\mathrm{N}-\mathrm{N}$ distances observed in the anionic triazenide complex (II) [1.310 (5) and 1.317 (6) Å]. On the other hand, both the N11-C11 [1.398 (3) \AA] and $\mathrm{N} 13-\mathrm{C} 21$ [1.405 (3) \AA] bonds are shorter than expected for an $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ single bond ($1.452 \AA$ for secondary amines, $\mathrm{NH} R_{2}$, with $R=\mathrm{Csp}{ }^{2}$; Orpen et al., 1989). These values, together with the observed $\mathrm{N}-\mathrm{N}$ bond distances, which imply partial double-bond character, provide evidence for the delocalization of the π electrons on the $\mathrm{N}-$ $\mathrm{N}=\mathrm{N}$ triad towards the terminal 2-fluorophenyl substituents.

The Cd-N11 [2.3757 (18) Å] and Cd-N13 [2.3800 (19) Å] bonds are both longer than the sum of the covalent radii (2.27 Å; Allen et al., 1987; Teatum et al., 1960) and correspond to covalent single bonds. These values are in good agreement
with those found in (II) [2.350 (5) and 2.397 (4) \AA] and (III) [2.350 (4) and 2.376 (4) Å].

The bidentate coordination mode of the triazenide ligand, together with the acute $\mathrm{N} 11-\mathrm{Cd}-\mathrm{N} 13$ angle [53.33 (6) ${ }^{\circ}$], give rise to a strained $\mathrm{Cd} / \mathrm{N} 11-\mathrm{N} 13$ four-membered ring. The bond angle of the triazenide moiety [109.46(17) ${ }^{\circ}$] deviates only slightly from the angles observed in complexes such as trans$\left[\mathrm{Pd}\left(\mathrm{FC}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{N}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]\left[111.0\right.$ (3) ${ }^{\circ}$; Hörner et al., 2002] and $\left[\mathrm{Au}\left(\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{N}-\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]\left[110.0(4)^{\circ}\right.$; Hörner, Casagrande et al., 2003], in which the triazenide ligand is monodentate.

The terminal 2-fluorophenyl substituents form a dihedral angle of $24.6(1)^{\circ}$, indicating the lack of planarity of the triazenide ligand.

The crystal structure of (I) reveals molecules linked into chains along the [001] direction via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity. [Symmetry code: $-x, 1-y, z$.]

Figure 2
The unit cell of (I), in a view slightly inclined from [010]. The intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions are shown as dashed lines. [Symmetry codes: (iii) $\frac{1}{2}-x, \frac{1}{2}+y, z$; (iv) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}+z$.]
interactions [C24 $4^{\mathrm{ii}} \ldots \mathrm{F} 1=3.351$ (3) \AA and $\mathrm{C} 24^{\mathrm{ii}}-\mathrm{H} 24^{\mathrm{ii}} \cdots \mathrm{F} 1=$ 101.12°; symmetry code: (ii) $\left.-x, y,-\frac{1}{2}+z\right]$; these chains, related by the axial c-glide plane, generate sheets of molecules in the (010) plane (Fig. 2). These values are comparable to those found for $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions in the crystal structure of the fluorobenzene $\mathrm{C}_{6} \mathrm{HF}_{5}(\mathrm{C} 6 \cdots \mathrm{~F} 11=3.46 \AA$ and $\mathrm{C} 6-$ H1...
F11 $=120.4^{\circ}$; Thalladi et al., 1998).
The pyridine ring (N31/C32-C36) makes a dihedral angle of $56.4(6)^{\circ}$ with the N11-Cd-N11 moiety. The Cd-N31 bond distance $[2.3461(19) \AA$] in (I) is longer than the sum of the covalent radii (2.27 Å; Allen et al., 1987; Teatum et al., 1960) and is comparable to the mean $\mathrm{Cd}-\mathrm{N}$ bond length found in $\mathrm{Cd}(\mathrm{py}){ }_{4} \mathrm{Cr}_{2} \mathrm{O}_{7}$ [2.347 (5) \AA; Norquist et al., 2001].

Experimental

Yellow 1,3-bis(2-fluorophenyl)triazene ($46.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in methanol (20 ml) and treated with two pellets of KOH , whereupon the solution changed colour to deep red. A solution of cadmium(II) acetate dihydrate $(26.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ in methanol (10 ml) was added slowly with continuous stirring; the reaction mixture changed colour to orange-red. The mixture was stirred for 1 h at room temperature, after which pyridine (2 ml) was added and stirring continued for a further 24 h . Orange-red prism-shaped crystals of (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvent at room temperature (yield $42.6 \mathrm{mg}, 58 \%$; m.p. 413 K).

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=735.03$
Orthorhombic, Iba2
$a=9.835(3) \AA$
$b=19.229$ (2) \AA
$c=16.750$ (6) \AA
$V=3167.6(15) \AA^{3}$
$Z=4$
$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=7.7-14.0^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=208$ (2) K
Prism, orange-red
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
\quad (Spek, 1990)
$\quad T_{\min }=0.779, T_{\max }=0.864$
4462 measured reflections
3800 independent reflections
3233 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.03$
3800 reflections
214 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0256 P)^{2}\right.$
$+0.7633 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-1 \rightarrow 12$
$k=-1 \rightarrow 25$
$l=-22 \rightarrow 22$
3 standard reflections frequency: 60 min intensity decay: 1%
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00193 (13)
Absolute structure: Flack (1983), 1829 Friedel pairs
Flack parameter $=-0.03(2)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cd-N31	$2.3461(19)$	$\mathrm{N} 11-\mathrm{C} 11$	$1.398(3)$
$\mathrm{Cd}-\mathrm{N} 11$	$2.3757(18)$	$\mathrm{N} 12-\mathrm{N} 13$	$1.303(3)$
$\mathrm{Cd}-\mathrm{N} 13$	$2.3800(19)$	$\mathrm{N} 13-\mathrm{C} 21$	$1.405(3)$
$\mathrm{N} 11-\mathrm{N} 12$	$1.311(2)$		
			$91.44(6)$
$\mathrm{N} 31-\mathrm{Cd}-\mathrm{N} 31^{\mathrm{i}}$	$91.40(10)$	$\mathrm{N} 31-\mathrm{Cd}-\mathrm{N} 13$	$97.26(6)$
$\mathrm{N} 31-\mathrm{Cd}-\mathrm{N} 11$	$94.24(6)$	$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N} 13$	$53.33(6)$
$\mathrm{N} 31^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N} 11$	$112.80(6)$	$\mathrm{N} 11-\mathrm{Cd}-\mathrm{N} 13$	$89.09(9)$
$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N} 11$	$141.42(8)$	$\mathrm{N} 13^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N} 13$	$109.46(17)$
$\mathrm{N} 31-\mathrm{Cd}-\mathrm{N} 13^{\mathrm{i}}$	$166.03(6)$	$\mathrm{N} 13-\mathrm{N} 12-\mathrm{N} 11$	

Symmetry code: (i) $-x, 1-y, z$.

The positional parameters of the H atoms were obtained geometrically and refined as riding $\left(\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for $\mathrm{Csp}{ }^{2}$ atoms), with isotropic displacement parameters of $1.2 U_{\text {eq }}$ of the attached Csp ${ }^{2}$ atom. Friedel opposites were not averaged before refinement. The Flack (1983) parameter was obtained by refinement. The F atoms show large thermal motion, indicated by their elongated displacement ellipsoids (Fig. 1). Split peaks for these atoms were not observed and consequently a disorder model was not used.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work received partial support from CNPq (proc. 475734/01-7). MH and VSC thank CNPq, and AS thanks UFSM-FIPE for grants. The authors thank Professor Dr J. Strähle, Institut für Anorganische Chemie, Universität Tübingen, Germany, for providing diffractometer facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1048). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brandenburg, K. (1996). DIAMOND. Version 1.1A. Crystal Impact GbR, Bonn, Germany.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hayashibe, Y. \& Sayama, Y. (1996). Analyst, 121, 7-11.
Hörner, M., Carratu, V. S., Herbst-Irmer, R., Mössmer, C. M. \& Strähle, J. (2003). Z. Anorg. Allg. Chem. 629, 219-222.

Hörner, M., Casagrande, I. C., Fenner, H., Daniels, J. \& Beck, J. (2003). Acta Cryst. C59, m424-m426.
Hörner, M., Pedroso, A. G., Bordinhao, J., Beck, J. \& Strähle, J. (1996). Z. Anorg. Allg. Chem. 622, 1177-1181.
Hörner, M., Visentin, L. C., Dahmer, M. \& Bordinhao, J. (2002). Acta Cryst. C58, m286-m287.
Moore, D. S. \& Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1-68.
Norquist, A. J., Heier, K. R., Halasyamani, P. S., Stern, C. L. \& Poeppelmeier, K. R. (2001). Inorg. Chem. 40, 2015-2019.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Peng, S.-M., Lin, Y.-N. \& Wang, Y. (1985). Bull. Inst. Chem. Acad. Sin. 32, 1-8.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Teatum, E., Gschneidner, K. \& Waber, J. (1960). Report LA-2345. Los Alamos Scientific Laboratory, New Mexico, USA.
Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.

